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Abstract. We present a lattice dynamics study of CdTe–HgTe superlattices grown along the
(001) and (111) directions within the framework of the adiabatic bond charge model. We find
that the long-range Coulomb interaction between particles situated on the opposite sides of the
interface needs to be handled carefully to get sensible frequencies and eigenvectors with the
proper symmetry and continuity. CdTe–HgTe superlattices grown along the (001) direction
show many propagating modes that travel with different wavevectors in CdTe and HgTe layers.
The wavevector in HgTe differs from the bulk value, particularly at long wavelengths. For (111)
superlattices all of the optical modes are either confined or interface modes. In both cases, the
frequencies of the HgTe optical modes do not map well to the bulk LO branch, and the highest
HgTe LO mode consistently remains below the bulk value even for 27 layers of HgTe. Our
results indicate that all of the unidentified peaks seen in the Raman spectra of (001) superlattices
can be explained in terms of superlattice modes.

1. Introduction

The lattice dynamics of semiconductor superlattices has attracted a lot of attention in
recent years [1]. Because of the reduced symmetry and additional periodicity of these
structures, many new zone-centre optical modes are created, which can be divided into
propagating, confinedand interface modes. Propagating modes extend throughout the
superlattice whereas confined modes have appreciable amplitude in one material and decay
exponentially in the other. Interface modes are localized at or near the interface. The
propagating and confined modes are derived from the optical and acoustic branches of the
two bulk materials, while interface modes lie in the band gaps of the two materials. A
number of Raman studies [2–5] have observed these modes near the zone centre. Various
theoretical models [3, 5–11] of varying complexity have been used to study these modes.

The vast majority of the work on unstrained superlattices has studied AlAs–GaAs and
GaAs–GaxAl 1−xAs superlattices. Comparatively little attention has been paid to under-
standing the vibrational properties of other lattice-matched systems such as CdTe–HgTe.
Since the proposal [12] in 1979 of CdTe–HgTe superlattices as a new material for infrared
optoelectronics, a lot of effort [13] has been devoted to understanding the optical and
electronic properties of this structure. However, only two Raman studies of the phonon
properties have appeared in the literature. The first study [14] reported the observation of
CdTe optical phonons in the resonant Raman scattering studies of CdTe–HgTe superlattices
grown along the (111) direction, while the other [15] observed mostly HgTe optical phonons
along with some unidentified peaks in the Raman spectra of (001) superlattices. There is
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as yet no comprehensive theoretical examination of the lattice dynamics of CdTe–HgTe
superlattices, although one study [16] devoted to the phonon density of states of the surfaces
and single interfaces of the CdTe/HgTe system has appeared. However, the phonon density
of states does not provide any information about the individual modes that can be compared
directly with the results of Raman scattering experiments. Moreover, the system consisting
of a single interface between two semi-infinite slabs is fundamentally different from the
periodic structure of a superlattice and the phonon spectrum of the former lacks many
features that arise purely from the periodicity of the superlattice.

From the point of view of lattice dynamics, the CdTe–HgTe superlattice is different
from that of GaAs–AlAs in two important ways. Both GaAs and AlAs are semiconductors,
with similar phonon properties. In fact, theab initio phonon force constants calculated
for GaAs give [17] an accurate description of the phonon dispersion of AlAs. As a result
of this similarity in the structural and dynamical properties of the two materials, the mass
approximation, in which the dynamical matrix of AlAs is obtained from that of GaAs by
changing the cation mass only, has been quite popular in studies [5, 8] of GaAs–AlAs
superlattices. This completely rules out the proper modelling of the interface between
the two materials. Even when different force constants were used [11], the interface was
modelled in a ratherad hoc fashion by averaging both the short-range and the long-range
force constants at the interface.

In contrast to those of GaAs–AlAs systems, the constituents of the CdTe–HgTe
superlattice are qualitatively very different materials. CdTe is an ordinary semiconductor
whereas HgTe is a zero-gap semi-metal. Though both materials are partly covalent, the
semi-metallic nature of HgTe leads to a charge density that is much less localized than in
CdTe. Therefore, the casual treatment of the modelling of the interface using the average
of the properties of each material that is common in treatments of GaAs–AlAs superlattices
does not give sensible answers for CdTe–HgTe superlattices.

An examination of the phonon dispersion of HgTe and CdTe shows that, unlike those of
GaAs and AlAs, the optical branches of CdTe and HgTe overlap significantly. As a result,
CdTe–HgTe superlattices will allow optical modes that can propagate in both materials.
Such modes, since they do not exist in GaAs–AlAs, have not been given much attention.
They have been observed in Raman studies [18] of GaAs–Ga1−xAl xAs, since forx < 1
GaAs and Ga1−xAl xAs have partially overlapping optical branches. However, the alloy
nature of Ga1−xAl xAs makes theoretical studies difficult. Because of the overlap in the
optical branches of CdTe and HgTe, the CdTe–HgTe superlattice will have all three kinds
of optical phonons, providing us with a lattice-matched system with partially overlapping
optical bands without the complications of a disordered alloy.

The apparently contradictory results of the two [14, 15] Raman studies of CdTe–HgTe
superlattices mentioned above remain unexplained. While a lattice dynamical study alone
will not explain why CdTe modes are seen in one case and HgTe modes in the other, it will
provide the necessary groundwork for a complete study of Raman activity and might provide
an explanation for the unidentified peaks in the Raman spectra seen in reference [15].

In this paper we present a study of the phonon properties of CdTe–HgTe superlattices
within the framework of the adiabatic bond charge model. Phenomenological models,
though less fundamental than the density functional approach, seem to be the only feasible
approach to studying phonon properties of complex systems such as superlattices, which
have large unit cells, and disordered alloys. For CdTe–HgTe superlattices in particular,
density functional approaches are hampered by the overlap of the conduction bands of
HgTe with the valence bands of CdTe and by the necessity to account for the very strong
spin–orbit coupling present in any total energy or Baroni-type [19] calculation. Also, since
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non-local pseudopotential calculations [20] are necessary to reproduce the electronic density,
the usual local density approximation may not be adequate. Since our model can reproduce
[21] the bulk phonon properties, the real usefulness of a density functional calculation would
be to givea priori values for the model parameters, particularly at the interface.

Our choice of the adiabatic bond charge model was dictated by a desire to have as few
adjustable parameters as possible. Traditionally, the lattice dynamics of II–VI materials with
zinc-blende crystal structure has been treated using rigid-ion or shell models [22, 23]. These
models give good fits to the observed phonon dispersion curves at the cost of a large number
of adjustable parameters (ten or more), some of which have no physical interpretation. The
adiabatic bond charge model, which is based on the first-principles studies of the electronic
structure of covalent materials, has been applied with great success to group IV elements
[24], III–V compounds [25] and GaAs–AlAs superlattices [6, 11]. In this model the valence
electron charge density is represented by massless point particles, the bond charges (BCs),
that are placed along the line joining the two ions and follow the ionic motion adiabatically.
These bond charges interact with each other and with the ions through short-range potentials
and the screened Coulomb interaction. By accounting for the valence electron screening,
the six-parameter adiabatic bond charge model gives results that show better agreement with
the neutron scattering data than rigid-ion or shell models.

This model was long believed to be unsuitable for II–VI compounds because of their
highly ionic character. However, we recently showed [21] that the six-parameter adiabatic
bond charge model provides a good description of the lattice dynamics of bulk II–VI
semiconductors and semi-metals with a zinc-blende structure (CdTe, ZnS, ZnSe, ZnTe,
HgSe and HgTe), provided that the bond charges are placed at positions predicted by the
non-local pseudopotential studies [20] of the valence electron charge density. The agreement
with experimental data was as good as with other lattice dynamical models requiring ten or
more parameters. We therefore believe this model to be a good starting point for discussing
the properties of II–VI superlattices.

The rest of the paper is organized as follows. Section 2 is devoted to the method of
calculation and how the very different Coulomb interactions in the two materials are handled.
In section 3 we present our results for various CdTe–HgTe superlattices grown along the
(001) and (111) directions and in section 4 we compare our results for (001) superlattices
with the existing Raman scattering data. Finally, section 5 gives a brief summary and
conclusion.

Table 1. BCM force constants for CdTe and HgTe in units ofe2/va, whereva is the unit-cell
volume.

φ′′ii /3 φ′′1/3 φ′′2/3 B1 B2 Z2/ε Z

CdTe 6.85 0.77 23.34 0.39 15.44 0.1830 1.15a

HgTe 6.46 0.081 13.46 1.08 15.60 0.1062 1.03a

a ε∞ for CdTe was taken from reference [34] and for HgTe from reference [35].

2. Method of calculation

In the bond charge model, the short-range interactions describe a direct interactionφ′′ii
between the anion and cation, an interaction between a bond charge and its adjacent cation
(φ′′1) or anion (φ′′2), and a three body BC–ion–BC Keating potentialB1 andB2 for each
ion. In addition, one accounts for the long–ranged Coulomb interactions(Z2/ε) of the
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anion, the cation and the bond charges. The difference in the electronic structure of CdTe
and HgTe is reflected in their BCM parameters [21], shown in table 1, in the fact that the
ion–BC parametersφ′′1/3, φ′′2/3 and the Coulomb interaction parameterZ2/ε for HgTe are
considerably smaller than those for CdTe. In particular, the Coulomb parameter for CdTe
is almost twice as large, resulting in a large mismatch in the Madelung energy of the two
materials.

Therefore the parameters describing the interface must be chosen carefully. Instead of
takingad hocaverages, we have tried to incorporate, at a microscopic level, the macroscopic
boundary conditions of uniform stress and uniform electric potential at the interface. The
parameters for the short-range interactions between particles located on the same side of the
interface were taken to be corresponding bulk values except the force constants between the
interfacial ions and the bond charges surrounding them on either side, which were taken to
be the averages of the corresponding parameters for the two materials. Also, the parameters
for BC–BC interactions surrounding the interfacial ions were taken to be the averages of
the corresponding bulk values. The net effect of using these approximations is to produce
a uniform local environment on both sides of the interfacial ion.

Because of the large mismatch in the Madelung energies of the two materials, fixing
the Coulomb parameterZ2/ε was not so simple. Simple recipes, namely, assigning the
uniform value of(Z2/ε)ave = (Z2/ε)1 + (Z2/ε)2 to every particle in the superlattice, or
using respective bulk values for particles on the same side of the interface and(Z2/ε)ave

for those on the opposite sides, yield imaginary frequencies.
A better solution is to treat the two materials as two media with different dielectric

constants. For a point charge in a semi-infinite medium with dielectric constantε1, adjacent
to a second semi-infinite dielectric medium with dielectric constantε2 the potential on
the same side of the interface is given byZ/(ε1r) plus a small correction proportional
to (ε2 − ε1)/(ε2 + ε1) [26]. The potential on the other side of the interface isZ/(εaver),
whereεave = (ε1 + ε2)/2. Therefore, in our calculation the Coulomb interaction for two
charges on the same side of the interface was divided by the corresponding bulk dielectric
constant while the Coulomb interaction for charges on different sides or charges on the
interface was divided byεave. The particles in the superlattice were assigned the same
charges as in the corresponding bulk materials except for interfacial ions for which we
found it necessary to use(ZCdTe+ ZHgTe) in the case of a (001) superlattice. With this
charge assignment, the bulk unit cells containing the interfacial ions at the two interfaces
are not charge neutral, although overall neutrality of the superlattice unit cell is preserved.
This interfacial modelling works for both (001) and (111) superlattices and gives positive
eigenvalues reflecting the required symmetry of the problem and eigenvectors that are
continuous at the interfaces.

The superlattice modes and frequencies are calculated by solving the standard BCM
equations [21] for the SL unit cell. The short-range part of the dynamical matrix was
constructed explicitly by unfolding the FCC lattice along the growth direction. The Coulomb
part was calculated by using the layered method [9] as well as the conventional Ewald
method. In order to use the layered method for the (111) superlattice one has to work
in a rotated space in which thex-, y-, z-directions correspond to(11̄0), (112̄) and (111)
respectively. For the conventional Ewald method, the superlattice direct-lattice vectors are
(l1, l2, l3) wherel1, l2 and l3 are integers such thatl1 + l2 +Nl3 is even for a (001) super-
lattice andl1 + l2 + l3 is a multiple of 2N for a (111) superlattice,N being the number
of layers in the superlattice unit cell. The reciprocal vectors can be obtained by choosing
one of the bulk FCC primitive reciprocal-lattice vectors along the growth direction and then
folding it N times.
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3. Results and discussion

As can be seen in figure 1 of reference [21], the optical bands of CdTe and HgTe overlap
partially. In fact, almost the entire LO branch of HgTe overlaps with the corresponding CdTe
mode. Moreover, the highest acoustic frequency in CdTe is higher than the smallest optical
frequency in HgTe. Because of this, the phonon dispersion of CdTe–HgTe superlattices
consists of closely spaced optical bands. There is no clear-cut separation between the bands
derived from CdTe or HgTe optical branches except for the few highest branches, which
are derived from CdTe optical phonons. Therefore, the identification of SL modes in terms
of CdTe or HgTe modes had to be done by examining the eigenvectors.

A classification based only on the atomic displacement can be misleading because of the
large mass difference in Cd and Hg. Instead, we use a criterion based on the mean squared
momentum in each material. This has the advantage of more directly measuring the energy
stored in each material, and is also directly related to the dipole oscillator strength in the
optical adsorption. We thus define thevibrational strengthof the modej by

Sj =
N−1∑
κ=0

|mκuκ |2 = SCdTe
j + SHgTe

j . (1)

Superlattice modes withSM
j > cSj wherec = 0.8 were classified as modes of material M.

All other modes were classified as extended modes. Too large a value ofc will classify
confined modes that have non-negligible penetration into the other layer as extended modes,
while a low value ofc (∼0.5) will result in most modes being classified as confined modes.
The number 0.8 was found to be an appropriate compromise.

With this classification scheme in mind, we will now analyse the dispersion curves of
CdTe–HgTe superlattices grown along the (001) and (111) directions. For convenience in the
following discussion, we will use SL as a shorthand notation for superlattice,(m, n)SL001
for an (m, n) layer superlattice along the (001) direction and(m, n)SL111 for a superlattice
grown along the (111) direction.

3.1. (001) superlattices

In figure 1 we present the phonon dispersion for (5, 5)SL001. A complicated pattern is
seen when the wavevector is in a plane perpendicular to the growth direction. The bands
with frequencies lower than 3.46 THz are derived from the acoustic branches and the bands
with frequencies between 2.66 THz and 3.46 THz are derived solely from the CdTe acoustic
branches.

The phonon dispersion forq along the growth direction consists of a series of lines
with no or linear dispersion. The high-frequency branches with no dispersion are the
confined optical phonons while the low-frequency branches with linear dispersion are the
folded acoustic phonons. This is similar to the case for GaAs–AlAs superlattices except
that one can find optical branches which have linear dispersion and therefore look like
folded acoustic branches. These dispersive branches represent optical frequencies which
are allowed in both materials, and are absent in the (111) superlattices discussed later since
the bulk LO branches in that direction do not overlap. In the (001) direction, the exact
positions at which they appear depend on the thickness of the superlattice, but generally
they appear in the overlapping region of the bulk LO branches. While these modes appear
to have been obtained by the folding of the LO branch of HgTe, they are not folded in the
usual sense of the word since neither their frequencies nor their displacement patterns can
be accounted for in terms of a superlattice wavevectorQ = lπ/d, l being an integer and
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Figure 1. Phonon spectra of (5, 5)SL001 (a) parallel and (b) perpendicular the growth direction.
The dashed line in the transverse panel indicates two closely spaced TO modes, one of which
is an interface mode (lower branch). The reduced wavevector is in units of 2π/a, wherea is
the bulk lattice constant.

d = d1+d2 being the superlattice period. This is because these modes propagate at different
wavevectors in the two layers. Therefore it is more appropriate to call them dispersive or
propagating phonons. These modes propagate with comparable amplitudes in the two layers
and have complex amplitude modulation, as figure 2 shows. The wavevector assignment
for these modes was done by looking at their displacement patterns in the two layers. Many
of these modes have wavevectors of the form(l + 0.5)π/di , wherel is an integer anddi is
the layer thickness. This is precisely the condition for an antinode at the interface, which
is what is observed in the displacement patterns of these modes. We find that for a given
mode the wavevector in the CdTe layers is very close to the value at which the particular
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Figure 2. Displacements for the extended LO modes. Circles denote cation displacements and
triangles denote anion displacements. The solid curves are a guide to the eye. The frequency
of the modes decreases from (a) to (h).

mode is allowed in bulk CdTe. However, the wavevectors in HgTe layers are different from
the corresponding bulk values. For example, the mode withf = 4.305 THz in figure 2(c)
is allowed in bulk HgTe atζ ' 0.31, whereζ is the reduced wavevector. A look at the
displacement pattern shows thatζ ' 0.2 in the superlattice, significantly different from the
bulk value. This difference decreases asζ approaches the zone boundary.

For folded acoustic branches, which are generally explained in terms of Rytov’s [27]
elastic continuum model, we get slopes of 2.816 cm s−1 and 2.717 cm s−1 for the zeroth-
and the first-order LA curves in the dispersion of (5, 5)SL001, as compared to 2.912 cm s−1

predicted by Rytov’s model. The slopes of the higher-order LA modes depart significantly
(2.31 cm s−1 for the second folded LA), mainly because of the fact that these branches
are folded from regions of the bulk Brillouin zone where the bulk LA branches of the two
materials do not exhibit linear dispersion. The agreement with Rytov’s model for the folded
TA modes is even worse because of the flattening of bulk TA branches.

An examination of the frequencies and eigenvectors of the modes in various superlattices
shows that not all of the zone-centre SL modes can be identified as bulk CdTe or HgTe
modes. Figure 2(a) shows that modes lying above the bulk LO frequency of HgTe, and thus
forbidden in bulk HgTe, are not necessarily confined in CdTe layers and may have significant
momentum in HgTe layers. Similarly, figure 2(b) shows that modes lying below the bulk
LO frequency of HgTe are not necessarily propagating modes in HgTe layers. As mentioned
above, we identified modes by calculating their vibrational strengths using equation (1). For
(5, 5)SL001, out of the ten LO modes only four modes could be identified as CdTe LO
modes and four as HgTe LO modes. The remaining two fell under the category of extended
modes. The first of these, at 4.35 THz, has a frequency which is slightly higher than the
bulk LO frequency of HgTe but never completely decays in HgTe layers, as figure 2(a)
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Figure 3. Mapping of the (001)SL modes to the bulk modes (——) of (a) CdTe and (b) HgTe.
The confined modes are◦: (5, 5)SL001,♦: (12, 25)SL001 and�: (19, 20)SL001, and4
indicates an extended mode.

shows. In fact, the vibrational strength of this mode is almost equally divided between the
two layers. The other mode (4.09 THz) is allowed in both materials and shows oscillatory
behaviour in both layers.

Because of the non-overlapping TO branches of CdTe and HgTe, the superlattice TO
modes show more confinement and all of the modes can be identified as bulk or interface
modes. In the bulk HgTe TO range one finds a single additional TO mode that is an
interfacial mode with most of its energy in the HgTe layer. There is correspondingly one
mode missing from the bulk CdTe TO range.

The SL modes confined to either layer are generally related to the bulk optical phonons
of constituent materials by defining an effective wavevector in analogy with the problem of
a particle confined in a box:

kn = nπ

(N + γ )d n = 1, 2, . . . , N (2)

with N being the number of monolayers in the slab andd the thickness of the monolayer.
The parameterγ is a measure of the degree of confinement of the mode,γ = 0 implying
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Figure 4. Displacements for the LO modes in (19, 20)SL001. The envelopes are sine or cosine
curves normalized to the appropriate vibrational strength.

Figure 5. Displacements for the LO modes in (5, 5)SL001. The envelopes are sine or cosine
curves normalized to the appropriate vibrational strength.

perfect confinement. The value ofγ is model and mode dependent and is generally between
0 and 1 for GaAs and AlAs [5, 8, 9, 10, 28].

The choice ofγ = 1 for the CdTe optical modes gives a very good mapping
of the SL zone-centre modes onto the bulk dispersion of CdTe along the (001) dir-
ection (figure 3(a)), and results in a fair mapping for HgTe TO modes, especially for
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the thicker superlattice (figure 3(b)). However, for the LO modes the best mapping, which
was still worse than that for TO modes, came from choosingγ = 0. The wavevector
assignments shown in these figures also give the best envelope for ionic displacements.

We have also plotted the extended modes along with the confined modes on the bulk
dispersion of CdTe and HgTe in figure 3. Like the confined CdTe modes, these extended
modes map quite well to the bulk dispersion curves of CdTe. However, mapping to the
bulk HgTe dispersion follows the pattern shown by the confined HgTe modes.

An analysis [29] of the thickness dependence of the highest LO modes shows that, as
in GaAs–AlAs SLs, the frequencies of highest CdTe and HgTe LO modes increase with
increasing thickness of the respective layer. The CdTe mode frequency approaches the bulk
LO value for a layer thickness of 19 monolayers or 61.5Å, as compared to 30̊A or roughly
11 monolayers for GaAs or AlAs [30]. The highest HgTe LO mode remains slightly, though
distinctly, below the bulk value even when the HgTe layer is 25 monolayers (81Å) thick.

This trend, when combined with our inability to properly map HgTe LO modes in the
superlattice onto the bulk LO curve suggests that the frequencies of HgTe modes in CdTe–
HgTe superlattices are lower than the frequencies in bulk HgTe. It can be seen that most
of these modes lie consistently below the bulk LO curve. Moreover, figure 2(b) shows that
the highest LO mode in the bulk LO range of HgTe is not necessarily a propagating mode.

These observations can be understood in terms of the stronger electric field in HgTe
layers due to the presence of higher charges in CdTe layers, which shifts the bulk HgTe
frequencies down. While higher charges in CdTe layers tend to lower the frequencies, the
lighter cation mass in CdTe layers will tend to push the frequencies up. However, it appears
that the perturbation due to the change in the Coulomb parameter is dominant since most
of the SL modes lie below the bulk branches. In particular, all of the SL modes up to
ζ = 0.6 lie below the bulk dispersion curves. A close examination of figure 3(a) supports
the above explanation as most of the confined CdTe modes lie slightly above the bulk
curves. However, the effect is not as pronounced as in the case of HgTe.

Figures 4 and 5 give the mass-weighted displacements of the various modes discussed
above. Here the anion displacement has been multiplied by−1. The ordern of the mode
is defined by the number of half-waves in the layer. The envelope shown is a sine (odd-n)
or cosine (even-n) curve with the wavevector given by equation (2). To account for the fact
that CdTe or HgTe modes are not perfectly confined in their respective layers, we normalized
these curves to the vibrational strengths of these modes calculated using equation (1). It
can be seen that these envelopes provide an excellent approximation for the displacement
patterns of the highest few modes. However, these modes become less confined as the
frequency decreases and the cation and anion displacements develop a phase shift. This
phase shift is more pronounced for the TO modes [29].

Unlike the confined CdTe modes, which show rapid decay in the HgTe layers, the
displacements for the confined HgTe modes show oscillations in the CdTe layers as seen
in figures 4 and 5. This behaviour is independent of the thickness of the HgTe layers as
similar patterns are seen for (5, 5)SL001 as well as (19, 20)SL001. Also, the displacements
of the HgTe modes in (5, 5)SL001 are poorly described by harmonic envelopes, especially
for highern.

The confined HgTe modes of higher ordern show oscillations whose amplitudes have
modulations characterized roughly by a wavevectorq = lπ/d, whered is the thickness
of the confining layer. Figure 6 shows displacements in the HgTe layers for many higher-
order confined HgTe modes of (19, 20)SL001, all of which lie below the smallest CdTe
LO frequency. A harmonic modulation with a periodd = 20 can be easily observed. Such
modes are not seen in GaAs–AlAs system since GaAs (AlAs) does not support harmonic



Phonons in CdTe–HgTe superlattices 3187

oscillations at optical frequencies characteristic of AlAs (GaAs), which is a prerequisite for
this behaviour. In all four modes most of the momentum is carried by Te ions. In particular,
Hg ions hardly move in the LO19 mode, which propagates with a bulk wavevector that is
very close to the zone boundary. This is consistent with the BCM prediction of the bulk
LO eigenvector for HgTe at the X point of the bulk Brillouin zone [21]. Similar behaviour
is seen for modes propagating in CdTe layers with wavevectors close to the bulk X point,
as shown in figures 2(g) and 2(h).

Figure 6. Displacements for the low HgTe LO modes in (19, 20)SL001. Circles denote cation
displacements and triangles denote anion displacements. The solid curves are a guide to the
eye.

Comparing the dispersion curves along different wavevector directions for the same
superlattice, we see that, for the highest optical mode, the frequencies are distinctly different
for q → 0 from the growth direction and from an in-plane direction. Other modes also
show this anisotropy but it is more pronounced for the highest modes of the two materials.
This anisotropy of the optical phonons has been observed in many Raman studies [4, 31] of
GaAs–AlAs superlattices. A detailed analysis [29] of the angular dependence of the zone-
centre SL modes, as the wavevector is rotated from the growth direction to an in-plane
direction, yields results that are qualitatively similar to those for GaAs–AlAs superlattices.
In particular, one can identify many Fuchs–Kliewer [32] modes, which have been observed
[33] in GaAs–AlGaAs SLs. All TO modes split as the wavevector rotates from the growth
direction to an in-plane direction.

3.2. (111) superlattices

The optical bands of bulk CdTe and HgTe do not overlap in the (111) direction. Therefore the
situation is qualitatively similar to that for GaAs–AlAs superlattices and the phonon spectra
of CdTe–HgTe superlattices grown along this direction do not contain any propagating
optical phonons. In figure 7 we present phonon spectra for (5, 5)SL111. We find that
the bands with frequencies between 2.36 THz and 3.22 THz result only from the acoustic
branches of CdTe.

A comparison with the spectra for (001) superlattices in figure 1 shows that the
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Figure 7. Phonon spectra of (5, 5)SL111 parallel and perpendicular to the growth direction.
The dashed lines indicate the transverse interface modes discussed in the text. The reduced
wavevector is in units of 2π/a, wherea is the bulk lattice constant.

dispersion curves for (001) and (111) superlattices are quite different even for superlattices
with the same number of layers. This is most obvious nearq = 0 where, because of the
zone-folding effects, different modes are seen in the two superlattices. This can be easily
seen in the acoustic frequency regime. Furthermore, the frequency of the highest optical
mode is slightly less in (111) superlattices than in (001) superlattices. In the confined-
phonon picture, this can be understood in terms of the larger dispersion of the LO branch
in the (111) direction.

For these superlattices, all of the optical modes propagating along the growth direction
can be identified as confined or interface modes. In particular, all the LO modes can be
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Figure 8. The two interface modes, each doubly degenerate, in a (5, 5)SL. The dotted lines
denote the location of the interfacial Te ion. The frequencies are (a) 4.08 THz and (b) 3.92 THz.
These modes are seen in all (111) superlattices.

identified as confined CdTe or HgTe modes. The phonon dispersion of this superlattice has
two TO modes each doubly degenerate, at 4.08 THz and 3.92 THz, that lie in the band gaps
of the two materials (dashed lines in figure 7) and therefore are true interface modes, highly
localized at the two interfaces as shown in figure 8. These modes show no dispersion at all
and appear in the spectra of all of the superlattices that we considered. All other TO modes
are confined modes.

In figure 9 we present the mapping of superlattice modes to the optical phonon dispersion
of bulk CdTe and HgTe respectively. As in the (001) superlattices, we find thatγ = 0 for
LO modes andγ = 1 for TO modes. However for the (5, 5)SL111 LO branch we got
better mapping withγ = 1. Due to their better confinement, the overall mapping for HgTe
modes is better than for the (001) superlattices, although the long-wavelength modes still
lie below the bulk curves. Also, the frequency of the highest HgTe LO mode remains
below the bulk LO frequency even for a (10, 27)SL111 [29], indicating that the lowering
of long-wavelength HgTe frequencies seen in (001) superlattices is not dependent on the
growth direction.

The angular dispersion results for (111) SLs are qualitatively similar to those for the
(001) superlattices [29]. One can identify many slab-like modes when the wavevector is
along (110). In particular, the two degenerate interface modes split for wavevectors not
parallel to the growth direction.

4. Comparison with experiments

So far, only two Raman scattering studies [14, 15] of CdTe–HgTe superlattices have
been reported in the literature. In the first of these, photoluminescence and resonant
Raman scattering measurements were performed [14] on superlattices grown along the
(111) direction. The Stokes spectra of these experiments showed sharp lines at energies
corresponding to the bulk CdTe LO phonon and its higher-order harmonics in addition
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Figure 9. Mapping of (111) superlattice modes to the bulk dispersion (——) of (a) CdTe and
(b) HgTe. Key to the symbols:◦: (5, 5)SL111;�: (8, 16)SL111;4: (10, 27)SL111.

to photoluminescence backgrounds. Since the main focus of the study was the electronic
properties of CdTe–HgTe superlattices, the only interesting lattice dynamics result noted
was the absence of peaks in the Raman spectra corresponding to any of the HgTe phonons
or any other CdTe phonons. The three superlattices SL1, SL2 and SL3 investigated in
reference [14] correspond to (8, 16)SL111, (10, 27)SL111 and (5, 10)SL111, respectively.
The first two superlattices were discussed earlier and it was shown that all of the optical
modes are well confined in their respective layers and can be described by means of an
effective wavevector. The results for the third superlattice are qualitatively similar to those
for the other two.

The second study was done by Fenget al [15] who performed Raman scattering
experiments on (001) superlattices. In these structures, the CdTe layer actually contained
a small amount of Hg and so these were actually Cd1−xHgxTe–HgTe superlattices, with
x ' 0.15. Cd1−xHgxTe is a mixed alloy and exhibits two-mode behaviour for all values of
x. Since we studied CdTe–HgTe superlattices rather than Cd1−xHgxTe–HgTe, we will not
get the two-mode behaviour and will not see HgTe-like modes associated with the alloy.
However, since the value ofx is quite small, the CdTe-like modes of Cd1−xHgxTe are
expected to be quite close to the optical frequencies of CdTe [23] and our theoretical results
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should agree with the experimental results [15].
The superlattices SL1 and SL2 considered in reference [15] correspond to (19, 20)SL001

and (12, 25)SL001 respectively. Many properties of these structures were discussed above.
Here we focus our attention on the identification of some of the calculated modes with
the experimental observations. SL2 had a 300Å CdTe cap whereas SL1 had no CdTe
cap. The experiment was done in the near-back-scattering geometry in which the incident
and scattered light waves are parallel to each other and almost perpendicular to the surface
of the sample. In this geometry both LO and TO modes are allowed, with LO modes
being favoured. Unlike the results of reference [14], the Raman spectra of SL1 showed no
peaks corresponding to CdTe phonons. However, there were two peaks, at 155 cm−1 and
425 cm−1, which were far from any of the known modes of CdTe or HgTe. The latter peak
was actually a broad feature extending from 350 to 550 cm−1 with a peak near 425 cm−1.
The Raman spectra of the other superlattice SL2, which had a CdTe cap, showed many
CdTe optical phonons and one unknown peak at 244 cm−1. That the two superlattices had
unknown peaks at different positions suggests that these modes might be SL modes.

In our calculations of these superlattices, we find one CdTe LO mode at 155.46 cm−1

(4.664 THz) in the spectrum of SL1. The spectrum of SL2 does not contain any modes
close to this energy. Consequently we can attribute the unknown peak at 155 cm−1 in the
Raman spectrum of SL1 to a superlattice mode since the difference between the former and
155.46 cm−1 is well within the resolution (2–3 cm−1) of that experiment.

The identification of the other unknown peak, at 425 cm−1 for SL1, to a SL mode is not
as straightforward. First of all, it should be realized that this peak, and the peak in SL2’s
spectrum can be explained only, if at all, in terms of higher harmonics since the optical
frequencies of CdTe lie between 127.3 cm−1 and 173.2 cm−1 and those of HgTe range from
115.3 cm−1 to 138 cm−1. For SL1, we find many closely spaced modes near 425 cm−1. For
example, there are two HgTe LO modes at 141.86 cm−1 and 142.32 cm−1 and eight doubly
degenerate CdTe TO modes between 141.55 cm−1 and 142.6 cm−1. The third harmonic of
all of these modes is within the experimental resolution of 425 cm−1. The broad feature at
this frequency could be a manifestation of all of these modes or due to HgTe LO modes
only, since LO modes are favoured in the near-back-scattering geometry. Similarly, the
unknown peak at 244 cm−1 in SL2’s spectrum can be due to the second harmonic of the
HgTe TO at 121.89 cm−1 or due to the third harmonic of either of the two HgTe LO modes
at 81.73 cm−1 and 81.04 cm−1.

5. Summary and conclusion

We have studied phonons in CdTe–HgTe superlattices grown along the (001) and (111)
directions. This is the first study of its kind for these structures and therefore we were unable
to compare our results with other studies of CdTe–HgTe superlattices. However, wherever
possible, we compared our results with existing studies of GaAs–AlAs superlattices. We
find that the question of interface modelling, which has been treated casually in the case
of GaAs–AlAs superlattices, becomes an important issue and needs to be treated carefully
to produce sensible results. In particular, the Coulomb interaction between two particles
situated on opposite sides of the interface has to be handled in a physical manner, consistent
with the boundary conditions of macroscopic electrostatics.

For superlattices grown along the (001) direction, we see many dispersive LO branches.
These branches lie in the overlapping regions of bulk LO branches of CdTe and HgTe and
represent phonons propagating in both materials. These modes have different wavevectors in
CdTe and HgTe layers that cannot be assigned by using some simple scheme. We assigned
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these wavevectors by examining the displacement patterns of these modes. We find that the
wavevectors in CdTe layers are close to the corresponding bulk values but the wavevectors
in HgTe layers are in general different from the wavevectors of the corresponding bulk
HgTe frequencies.

Our results for (111) superlattices are qualitatively similar to those for GaAs–AlAs
superlattices. This is because the optical bands of CdTe and HgTe do not overlap in the
(111) direction. However, for both the (001) and (111) directions we find that the frequencies
of HgTe modes, especially at long wavelengths in the (001) direction, do not map as well
to the bulk dispersion of HgTe as do those of CdTe. Furthermore, the frequency of the
highest HgTe LO mode does not attain the bulk limit even for a 27-monolayer-thick HgTe
layer. Such an effect is not seen in GaAs–AlAs superlattices where one can always map the
calculated and even the experimentally determined SL modes to appropriate bulk branches.
We attribute this to the substantial differences in the dielectric properties of the two materials,
which result in a stronger electric field because of the higher Coulomb parameter in CdTe
layers.

Since the frequency shifts are small, one can always wonder whether these effects
are an artifact of the model. This question can be addressed experimentally. A first-
principles calculation would be useful as well, and could also shed light on the appropriate
parameters to use for the ions at the CdTe/HgTe interface. Since the short-range and long-
range parameters of BCM are coupled through the equilibrium conditions, we did not have
enough freedom to use different modelling schemes at the interface. Therefore we could
not study the dependence of superlattice modes on different interface configurations.

Our work also shows that the unknown peaks in the Raman scattering results of
reference [15] can be accounted for in terms of the superlattice modes. The unknown
peak at 155 cm−1 in the spectra of SL1 can be unambiguously assigned to a confined CdTe
LO mode. The other two peaks at 425 cm−1 (SL1) and at 244 cm−1 (SL2) can be identified
as harmonics of predominantly bulk-like CdTe and HgTe modes that are modified by the
superlattice. Thus we see that both CdTe and HgTe modes are present in the results of
Fenget al. However, CdTe modes could not be identified because they are not multiple
harmonics of the zone-centre LO mode in bulk CdTe.
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